From Forced Vibration Testing
نویسنده
چکیده
THE TECHNIQUE OF DETERMINATION OF STRUCTURAL PARAMETERS FROM FORCED VIBRATION TESTING Wai Fan Tsang This thesis details the results of an investigation into a technique for determination of "useful" structural parameters from forced vibration testing. The implementation of this technique to full scale civil engineering structures was achieved by several developments in the experimental and computational fronts: a vibration generator and a computer-aided-testing system for the former and two computational algorithms for the latter. The experimental developments are instrumental to exciting large structures and acquisition of large quantities of useful data in digital format. These data serve as inputs to the computational algorithms whose outputs are structural parameters. These parameters are in either modal or spatial forms which cannot be measured directly but have to be extracted from the raw data. The modal-parameter-extraction method is based on direct Least-Square fitting technique and is simple to implement. The technique can yield good accuracy if the residual effects from out-of-range modes are removed from the raw data before fitting. The spatialparameter-extraction method distinguishes itself from other conventional methods in the way that the orthogona/ity property is not explicitly used. This method is applicable to situations where conventional methods are not; i.e. in cases if modal matrices are not square. Some success was achieved in cases in which computer synthesized or good quality laboratory test data were used. Full scale field tests of a tall office block and a slender tower were carried out and their modal models obtained. Attempts to obtain spatial models of these structures were not carried out, however, as this task can be a separate research topic in its own right. Further research in such application is still required.
منابع مشابه
Experimental Methods Used in System Identification of Civil Engineering Structures
To experimentally identify the dynamic characteristics of a structure, also referred to as system identification, two methods are available: Forced Vibration Testing (FVT) and Ambient Vibration Testing (AVT). The basic ideas of these methods are shortly presented. The main part of the paper deals with practical problems which are to be overcome when performing such a system identification test....
متن کاملData of piezoelectric vibration energy harvesting of a bridge undergoing vibration testing and train passage
The data presented in this article is in relation to the research article "Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage" Cahill et al. (2018) [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept ...
متن کاملAxially Forced Vibration Analysis of Cracked a Nanorod
Thisstudy presents axially forced vibration of a cracked nanorod under harmonic external dynamically load. In constitutive equation of problem, the nonlocal elasticity theory is used. The Crack is modelled as an axial spring in the crack section. In the axial spring model, the nonrod separates two sub-nanorods and the flexibility of the axial spring represents the effect of the crack. Boundary ...
متن کاملComparisons between Ambient and Forced Vibration Experiments
The ambient and forced vibration techniques for testing full-scale structures are critically compared. Both methods, based on small level excitation, may be used to determine many mode shapes and frequencies of vibration and the corresponding damping values, with adequate accuracy for most purposes. The two techniques give mutually consistent results. The mode amplitudes determined by ambient a...
متن کاملFree and Forced Vibration Analysis of Composite Laminated Conical Shells under Different Boundary Conditions Via Galerkin Method
In this paper, natural frequency and response of forced vibration of composite laminated conical shells under different boundary conditions are investigated. To this end, equations of Donnell's thin shell theory are used as governing equations. The analytical Galerkin method together with beam mode shapes as weighting functions is employed to solve the problem. Due to importance of boundary con...
متن کامل